Abstract

People simulate themselves moving when they view a picture, read a sentence, or simulate a situation that involves motion. The simulation of motion has often been studied in conceptual tasks such as language comprehension. However, most of these studies investigated the direct influence of motion simulation on tasks inducing motion. This article investigates whether a motion induced by the reactivation of a dynamic picture can influence a task that did not require motion processing. In a first phase, a dynamic picture and a static picture were systematically presented with a vibrotactile stimulus (high or low frequency). The second phase of the experiment used a priming paradigm in which a vibrotactile stimulus was presented alone and followed by pictures of objects. Participants had to categorize objects as large or small relative to their typical size (simulated size). Results showed that when the target object was preceded by the vibrotactile stimulus previously associated with the dynamic picture, participants perceived all the objects as larger and categorized them more quickly when the objects were typically “large” and more slowly when the objects were typically “small.” In light of embodied cognition theories, this bias in participants’ perception is assumed to be caused by an induced forward motion generated by the reactivated dynamic picture, which affects simulation of the size of the objects.

The text of this article is only available as a PDF.
You do not currently have access to this content.