Based on the geometry and surface in Daya Bay, we artificially divided the reclamation projects into three periods to analyze the influences and changes on hydrodynamic conditions as a result of the reclamation projects. Three periods of tidal current fields, tidal prisms, and water exchange capacity are simulated by the Finite-Volume, primitive equation Community Ocean Model and the characteristics and trends of hydrodynamics in Daya Bay are discussed. The combination of observation and simulation in this paper gives a good description on the tidal dynamic system in Daya Bay. As indicated by model results, the tidal current velocity in the Bay totally decreases after numerous activities associated with reclamation construction. The decreasing current velocity region is mainly distributed near the Xiachong and Gangkou chain islands. The current velocity in 2015 decreases by approximately 5 cm s−1 compared with velocities before 2000. Future reclamation activities will exacerbate these decreasing current velocity trends in some regions. Compared with 2015, the tidal prism has significantly decreased by 1.3622 × 107 m3 due to planned reclamation. The half-water exchange times for Daya Bay in 2015 and after planned reclamation are 178.9 and 177.4 days, respectively. The water exchange capacity in Fanhe Harbor is weaker than other water fields throughout Daya Bay.
Skip Nav Destination
Article navigation
Research Article|
April 03 2019
Hydrodynamic changes due to coastal reclamation activities in Daya Bay
Lifang Jiang;
Lifang Jiang
South China Sea Marine Forecast Center of State Oceanic Administration, Guangzhou 510310, China
*Corresponding author: [email protected]
Search for other works by this author on:
Aquatic Ecosystem Health & Management (2019) 22 (2): 215–227.
Citation
Yi Yin, Lifang Jiang, Zhixu Zhang, Hongbing Yu; Hydrodynamic changes due to coastal reclamation activities in Daya Bay. Aquatic Ecosystem Health & Management 3 April 2019; 22 (2): 215–227. doi: https://doi.org/10.1080/14634988.2019.1635421
Download citation file:
Advertisement
Total Views
41
29
Pageviews
12
PDF Downloads
Since 2/1/2021